Surface-functionalized hyperbranched poly(amido acid) magnetic nanocarriers for covalent immobilization of a bacterial γ-glutamyltranspeptidase.

نویسندگان

  • Tzong-Yuan Juang
  • Shao-Ju Kan
  • Yi-Yu Chen
  • Yi-Lin Tsai
  • Min-Guan Lin
  • Long-Liu Lin
چکیده

In this study, we synthesized water-soluble hyperbranched poly(amido acid)s (HBPAAs) featuring multiple terminal CO2H units and internal tertiary amino and amido moieties and then used them in conjunction with an in situ Fe2+/Fe3+ co-precipitation process to prepare organic/magnetic nanocarriers comprising uniformly small magnetic iron oxide nanoparticles (NP) incorporated within the globular HBPAAs. Transmission electron microscopy revealed that the HBPAA-γ-Fe2O3 NPs had dimensions of 6-11 nm, significantly smaller than those of the pristine γ-Fe2O3 (20-30 nm). Subsequently, we covalently immobilized a bacterial γ-glutamyltranspeptidase (BlGGT) upon the HBPAA-γ-Fe2O3 nanocarriers through the formation of amide linkages in the presence of a coupling agent. Magnetization curves of the HBPAA-γ-Fe2O3/BlGGT composites measured at 300 K suggested superparamagnetic characteristics, with a saturation magnetization of 52 emu g⁻¹. The loading capacity of BlGGT on the HBPAA-γ-Fe2O3 nanocarriers was 16 mg g⁻¹ support; this sample provided a 48% recovery of the initial activity. The immobilized enzyme could be recycled 10 times with 32% retention of the initial activity; it had stability comparable with that of the free enzyme during a storage period of 63 days. The covalent immobilization and stability of the enzyme and the magnetization provided by the HBPAA-γ-Fe2O3 NPs suggests that this approach could be an economical means of depositing bioactive enzymes upon nanocarriers for BlGGT-mediated bio-catalysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct DNA Immobilization onto a Carbon Nanotube Modified Electrode: Study on the Influence of pH and Ionic Strength

Over the past years, DNA biosensors have been developed to analyze DNA interaction and damage that have important applications in biotechnological researches. The immobilization of DNA onto a substrate is one key step for construction of DNA electrochemical biosensors. In this report, a direct approach has been described for immobilization of single strand DNA onto carboxylic acid-functionalize...

متن کامل

Palladium nanoparticles immobilized on multifunctional ‎hyperbranched polyglycerol-grafted magnetic nanoparticles as a ‎sustainable and efficient catalyst for C-C coupling reactions

This study offers an exclusive class of magnetic nanoparticles supported hyperbranched polyglycerol (MNP/HPG) that was functionalized with citric acid (MNP/HPG-CA) as a host immobilization of palladium nanoparticles. The MNP/HPG-CA/Pd catalyst was fully characterized using some different techniques such as thermogravimetric analysis (TGA), x-ray diffraction (XRD), transmission electron microsco...

متن کامل

pH- and redox-responsive self-assembly of amphiphilic hyperbranched poly(amido amine)s for controlled doxorubicin delivery.

Vinyl-terminated hyperbranched poly(amido amine)s is obtained by Michael addition polymerization of 4-(aminomethyl)piperidine (AMPD) with a double molar N,N-cystaminebis(acrylamide) (BAC). Then an amphiphilic hyperbranched poly(BAC2-AMPD1)-PEG is produced via converting the vinyl groups to amines followed by PEGylation. Transmission electron microscopy (TEM), dynamic light scattering (DLS), and...

متن کامل

Special Issue: Enzyme Immobilization 2016.

The use of enzymes as industrial biocatalysts is currently a solution for many problems of modern organic chemistry, which tries to carry out the most complex reactions under the rules of green chemistry [1]. In this context, enzyme immobilization is a critical point for the implementation of many processes [2]. This technique has been developed to obtain a heterogeneous biocatalyst, and thereb...

متن کامل

Covalent Immobilization of Bacillus licheniformis γ-Glutamyl Transpeptidase on Aldehyde-Functionalized Magnetic Nanoparticles

This work presents the synthesis and use of surface-modified iron oxide nanoparticles for the covalent immobilization of Bacillus licheniformis γ-glutamyl transpeptidase (BlGGT). Magnetic nanoparticles were prepared by an alkaline solution of divalent and trivalent iron ions, and they were subsequently treated with 3-aminopropyltriethoxysilane (APES) to obtain the aminosilane-coated nanoparticl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 19 4  شماره 

صفحات  -

تاریخ انتشار 2014